Full text

Turn on search term navigation

© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nanomaterials and nanotechnology are emerging as promising strategies for medical devices due to their advantageous properties, including the ability to effectively interact with biomolecules and tissues, as well as enhance therapeutic efficacy and biocompatibility. This has resulted in approved and candidate devices in fields, such as orthopedics, dentistry, wound care, and neurology. However, the overall progress in translating medical devices using nanomaterials has been relatively slow, highlighting the urgent need to advance regulatory science. Regulatory authorities and organizations, such as the National Medical Products Administration in China and the European Union, have issued essential guidance documents for these devices safety and efficiency evaluation. These documents include special requirements and considerations for physicochemical characterization, biological evaluation, and other aspects. Although some evaluation paths have been defined, ongoing advancements in technologies and methods are expected to enhance safety evaluation practices, reduce burdens on the medical device industry, and accelerate the clinical translation of medical devices using nanomaterials. Herein, we review the current state of regulatory science related to medical devices using nanomaterials, suggest the feasibility of using in vitro alternative methods to advance regulatory science, and offer forward-looking insights to inspire new ideas and technologies for accelerating clinical translation.

Details

Title
Advances in medical devices using nanomaterials and nanotechnology: Innovation and regulatory science
Author
Lin, Chubing 1 ; Huang, Xin 1 ; Xue, Yueguang 1 ; Jiang, Shasha 2 ; Chen, Chunying 3 ; Liu, Ying; Chen, Kuan

 School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China 
 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China 
 The 990th Hospital of the Jointservice Support Force of the PLA, Zhumadian, Henan province, 463000, China 
Pages
353-369
Section
Review article
Publication year
2025
Publication date
2025
Publisher
KeAi Publishing Communications Ltd
ISSN
20971192
e-ISSN
2452199X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181907976
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.