Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper addresses the robust control problem for under-actuated mechanical systems subject to uncertainties. The key challenge lies in achieving precise control with insufficient degrees of freedom while maintaining robustness against system uncertainties. We propose a novel control framework that characterizes bounded, time-varying uncertainties through fuzzy set theory, leading to a fuzzy dynamical system formulation. The main contributions are threefold: (1) the development of a deterministic robust controller that eschews traditional IF-THEN rules while guaranteeing system stability through a Lyapunov–Minimax analysis; (2) the formulation of a performance optimization scheme that minimizes both fuzzy system average performance and control costs, with proven existence and uniqueness of the analytical solution; and (3) the establishment of stability conditions using the Lyapunov theory for time-varying systems with bounded uncertainties. The theoretical framework is validated through both numerical simulations and experimental implementation on a linear motor-driven inverted pendulum system. The experimental results demonstrate significant performance improvements over conventional approaches: the optimal robust controller achieves 34.89% and 29.20% reductions in cart position and pendulum angle errors, respectively, from the initial conditions. A comparative analysis with traditional PD control shows a reduction in steady-state errors from 0.00318 m to 0.00057 m for the cart position and from 0.01117 rad to 0.00055 rad for the pendulum angle, validating the effectiveness of the proposed methodology.

Details

Title
Robust Control Design and Optimization for Under-Actuated Mechanical Systems Considering Fuzzy Uncertainties
Author
Chen, Xiaofei 1 ; Fang, Jie 2 ; Li, Jiandong 3 

 School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237012, China; School of Mechanical Engineering, Hefei University of Technology, Hefei 230002, China 
 School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an 237012, China 
 School of Mechanical Engineering, Hefei University of Technology, Hefei 230002, China 
First page
609
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3182118256
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.