Full text

Turn on search term navigation

© 2025 Leigh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Acute myeloid leukemia (AML) is characterized by several recurrent mutations that affect disease biology and phenotype, response to therapy and risk of subsequent relapse. Though tyrosine kinase inhibitors have gained regulatory approval for the treatment of AML, it is unclear whether single drugs targeting a specific genomic alteration will be sufficient to eradicate disease. Fortuitously, kinase/bromodomain inhibitors allow targeting of downstream transcriptional effectors of oncogenic pathways, allowing impediment of drug resistance at the transcriptional level. Successful development of combinatorial therapeutic strategies to inhibit both upstream oncogenic pathways and their downstream effectors could thus impede the onset of resistant disease. By using a combination of high-throughput cell-based screening assays and structure-based design, we have developed a novel anti-proliferative 3i-compound scaffold with a diverse range of single and dual FLT3/TAF1(2) activity against AML. Our novel approach to target both FLT3 kinase and TAF1(2) bromodomain efficiently maintained potency against haematological cancers. However, reference compounds and in vitro cell viability and cytotoxicity assays in cancer cell lines demonstrated superior effects of high affinity tyrosine kinase inhibition compared to inhibition of the TAF1 bromodomain. Our results highlight the feasibility of dual tyrosine kinase-bromodomain targeting to overcome disease mechanisms while also revealing the increased efficacy of FLT3-targeted compounds in AML.

Details

Title
Development and comparison of single FLT3-inhibitors to dual FLT3/TAF1-inhibitors as an anti-leukemic approach
Author
Leigh, Robert S; Kaynak, Bogac L; Ruskoaho, Heikki; Välimäki, Mika J  VIAFID ORCID Logo 
First page
e0320443
Section
Research Article
Publication year
2025
Publication date
Mar 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3182691447
Copyright
© 2025 Leigh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.