It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aerial images resulting from unmanned aerial vehicle (UAV) are widely used to estimate tree height. The filtering method is required to distinguish between ground and off-ground point clouds to generate a canopy height model. However, the filtering method is not always perfect since UAV data cannot penetrate canopies into the forest floor. The release of iPhone/iPad devices with built-in LiDAR sensors enables the more affordable use of LiDAR for forestry study, including the measurement of local topography below forest stands. This study investigates to what extent iPhone/iPad LiDAR can improve the accuracy of canopy height model from the UAV. The integration of UAV and iPhone/iPad LiDAR data managed to increase the accuracy of tree height model with a mean absolute error (MAE) of 2.188 m, compared to UAV data (MAE = 2.446 m). This preliminary study showed the potential of combining UAV and iPhone/iPad LiDAR data for estimating tree height.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer