It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The primary goal of predictive modeling for compositional microbiome data is to better understand and predict disease susceptibility based on the relative abundance of microbial species. Current approaches in this area often assume a high-dimensional sparse setting, where only a small subset of microbiome features is considered relevant to the outcome. However, in real-world data, both large and small effects frequently coexist, and acknowledging the contribution of smaller effects can significantly enhance predictive performance. To address this challenge, we developed Bayesian Compositional Generalized Linear Mixed Models for Analyzing Microbiome Data (BCGLMM). BCGLMM is capable of identifying both moderate taxa effects and the cumulative impact of numerous minor taxa, which are often overlooked in conventional models. With a sparsity-inducing prior, the structured regularized horseshoe prior, BCGLMM effectively collaborates phylogenetically related moderate effects. The random effect term efficiently captures sample-related minor effects by incorporating sample similarities within its variance-covariance matrix. We fitted the proposed models using Markov Chain Monte Carlo (MCMC) algorithms with rstan. The performance of the proposed method was evaluated through extensive simulation studies, demonstrating its superiority with higher prediction accuracy compared to existing methods. We then applied the proposed method on American Gut Data to predict inflammatory bowel disease (IBD). To ensure reproducibility, the code and data used in this paper are available at https://github.com/Li-Zhang28/BCGLMM.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer