It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In microarray prognostic studies, researchers aim to identify genes associated with disease progression. However, due to the rarity of certain diseases and the cost of sample collection, researchers often face the challenge of limited sample size, which may prevent accurate estimation and risk assessment. This challenge necessitates methods that can leverage information from external data (i.e., source cohorts) to improve gene selection and risk assessment based on the current sample (i.e., target cohort).
Method
We propose a transfer learning method for the accelerated failure time (AFT) model to enhance the fit on the target cohort by adaptively borrowing information from the source cohorts. We use a Leave-One-Out cross validation based procedure to evaluate the relative stability of selected genes and overall predictive power.
Conclusion
In simulation studies, the transfer learning method for the AFT model can correctly identify a small number of genes, its estimation error is smaller than the estimation error obtained without using the source cohorts. Furthermore, the proposed method demonstrates satisfactory accuracy and robustness in addressing heterogeneity across the cohorts compared to the method that directly combines the target and the source cohorts in the AFT model. We analyze the GSE88770 and GSE25055 data using the proposed method. The selected genes are relatively stable, and the proposed method can make an overall satisfactory risk prediction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer