It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Understanding the mechanisms of genetic evolution in marine yeasts is essential for their ecological and biotechnological applications. Scheffersomyces spartinae, an ascomycetous yeast species, characterized by its remarkable robustness and carbon source utilization capability, has garnered significant attention for its biotechnological potential.
Results
In this study, we investigated the spontaneous and induced genomic alterations of the marine yeast S. spartinae under various conditions. Through mutation accumulation experiments combined with whole-genome sequencing, we revealed that the rates of spontaneous single nucleotide variations and small insertions and deletions were 6.3 × 10⁻¹¹ and 1.4 × 10⁻¹¹ per base pair per cell division, respectively, in S. spartinae. The predominant type of base substitution was C-to-T or G-to-A, likely induced by cytosine deamination. Template slippage during DNA replication emerged as the primary cause of small InDels. 50 J/m2 UV treatment elevated the SNV rate by 124-fold, with C-to-T substitutions occurring at the 5’-TC-3’ motif and T-to-C substitutions at the 5’-TT-3’ motif being the most prominent features. Exposure to 50 µg/mL Zeocin resulted in 76-fold and 71-fold increases in the rates of SNVs and InDels, respectively, with frequent T-to-A mutations and T deletions occurring at the 5’-GT-3’ motifs. Heat stress at 37 °C increased the SNVs and InDels rates to 1.4 × 10⁻¹⁰ and 7.5 × 10⁻¹¹ per base pair per cell division. Notably, this study demonstrated that large deletions and duplications (> 1 kb) and aneuploidies are less likely to occur in S. spartinae compared to other yeast species, suggesting that this organism is less tolerant to large-scale genomic alterations. In contrast, we observed a marked decrease in rDNA copy numbers when S. spartinae cells were cultivated at elevated temperature conditions. This finding indicates that variations in rDNA copy numbers might act as an adaptive strategy for yeasts in response to fluctuating temperatures.
Conclusions
Our findings provide novel insights into the patterns and genetic mechanisms underlying genomic evolution in yeasts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer