It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The quality of groundnut produce is adversely impacted due to aflatoxin contamination by the fungus Aspergillus flavus. Although the transcriptomic control is not fully understood, the interaction between long non-coding RNAs and microRNAs in regulating A. flavus and aflatoxin contamination remains unclear. This study was carried out to identify microRNAs (miRNAs) to enhance the understanding of in vitro seed colonization (IVSC) resistance mechanism in groundnut.
Result
In this study, resistant (J 11) and susceptible (JL 24) varieties of groundnut were treated with toxigenic A. flavus (strain AF-11–4), and total RNA was extracted at 1 day after inoculation (1 DAI), 2 DAI, 3 DAI and 7 DAI. Seeds of JL 24 showed higher mycelial growth than J 11 at successive days after inoculation. A total of 208 known miRNAs belonging to 36 miRNA families, with length varying from 20–24 nucleotides, were identified, along with 27 novel miRNAs, with length varying from 20–22 nucleotides. Using psRNATarget server, 952 targets were identified for all the miRNAs. The targeted genes function as disease resistant proteins encoding, auxin responsive proteins, squamosa promoter binding like proteins, transcription factors, pentatricopeptide repeat-containing proteins and growth regulating factors. Through differential expression analysis, seven miRNAs (aly-miR156d-3p, csi-miR1515a, gma-miR396e, mtr-miR2118, novo-miR-n27, ptc-miR482d-3p and ppe-miR396a) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in J 11, whereas ten miRNAs (csi-miR159a-5p, csi-miR164a-3p, novo-miR-n17, novo-miR-n2, osa-miR162b, mtr-miR2118, ptc-miR482d-3p, ptc-miR167f-3p, stu-miR319-3p and zma-miR396b-3p) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in JL 24. Two miRNAs, ptc-miR482d-3p and mtr-miR2118, showed contrasting expression at different time intervals between J 11 and JL 24. These two miRNAs were found to target those genes with NBS-LRR function, making them potential candidates for marker development in groundnut breeding programs aimed at enhancing resistance against A. flavus infection.
Conclusion
This study enhances our understanding of the involvement of two miRNAs namely, ptc-miR482d-3p and mtr-miR2118, along with their NBS-LRR targets, in conferring resistance against A. flavus-induced aflatoxin contamination in groundnut under in vitro conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer