It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The availability and quality of irrigation water in Egypt have become major challenges for the agricultural sector. Thus, increasing water productivity and improving irrigation efficiency are critical goals. A field experiment was conducted under Upper Egypt conditions at the El-Mattana Agricultural Research Station, Luxor governorate, Egypt, to evaluate the effects of different irrigation methods traditional furrow irrigation (Ti), surge furrow irrigation (Si), and alternate furrow irrigation (Ai), on water productivity, growth, and yield of wheat in clay loam soil. The wheat cultivar MISR2 (Triticum aestivum L.) was cultivated during the 20/21 and 21/22 growing seasons, using irrigation scheduled after 50% depletion of the soil available water. The results indicated that the treatment of Si produced the greatest plant height (115.0 and 117.7 cm) and grain yield (7.99 and 8.16 t ha⁻¹) for both seasons, respectively. In contrast, the treatment of Ai resulted in the lowest values for these traits (106.4 and 107.2 cm in plant height and 6.94 and 6.24 t ha⁻¹ in grain yield, respectively). The total annual rainfall during the two growing seasons were recorded as 0 mm. The highest amount of irrigation water applied (6522, 6427.2 m3 ha-1) was recorded with the treatment of Ti; while the lowest amount (5493.6, 5175.1 m3 ha-1) was recorded with Ai treatments in 20/21, and 21/22 growing seasons, respectively. The highest irrigation water productivity (1.75 kg m-3 and 1.35 kg m-3 in the first season and 1.44 kg m-3 and 1.20 kg m-3 in the second season under the treatment of Ai and Si, respectively. The treatment of Ai was most effective for saving water, by 15.8% and 19.48% over the two seasons. These results suggesting that an extra irrigation water amount may be saved without any significant loss in yield of wheat when applying Si irrigation method. This research contributes to developing evidence-based irrigation management strategies for improving wheat production in arid regions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer