Abstract

Background

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has varied presentations from asymptomatic to death. Efforts to identify factors responsible for differential COVID-19 severity include but are not limited to genome wide association studies (GWAS) and transcriptomic analysis. More recently, variability in host epigenomic profiles have garnered attention, providing links to disease severity. However, whole epigenome analysis of the respiratory tract, the target tissue of SARS-CoV-2, remains ill-defined.

Results

We interrogated the nasal methylome to identify pathophysiologic drivers in COVID-19 severity through whole genome bisulfite sequencing (WGBS) of nasal samples from COVID-19 positive individuals with severe and mild presentation of disease. We noted differential DNA methylation in intergenic regions and low methylated regions (LMRs), demonstrating the importance of distal regulatory elements in gene regulation in COVID-19 illness. Additionally, we demonstrated differential methylation of pathways implicated in immune cell recruitment and function, and the inflammatory response. We found significant hypermethylation of the FUT4 promoter implicating impaired neutrophil adhesion in severe disease. We also identified hypermethylation of ELF5 binding sites suggesting downregulation of ELF5 targets in the nasal cavity as a factor in COVID-19 phenotypic variability.

Conclusions

This study demonstrated DNA methylation as a marker of the immune response to SARS-CoV-2 infection, with enhancer-like elements playing significant roles. It is difficult to discern whether this differential methylation is a predisposing factor to severe COVID-19, or if methylation differences occur in response to disease severity. These differences in the nasal methylome may contribute to disease severity, or conversely, the nasal immune system may respond to severe infection through differential immune cell recruitment and immune function, and through differential regulation of the inflammatory response.

Details

Title
Methylation patterns of the nasal epigenome of hospitalized SARS-CoV-2 positive patients reveal insights into molecular mechanisms of COVID-19
Author
Spector, Benjamin L; Koseva, Boryana; McLennan, Rebecca; Banerjee, Dithi; Lankachandra, Kamani; Bradley, Todd; Rangaraj Selvarangan; Grundberg, Elin
Pages
1-23
Section
Research
Publication year
2025
Publication date
2025
Publisher
BioMed Central
e-ISSN
1755-8794
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3187554944
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.