It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Weather has a profound influence on crop growth, development and yield. The present study deals with the use of weather parameters for sugarcane yield forecasting. Machine learning techniques like K- Nearest Neighbors (KNN) and Random Forest model have been used for sugarcane yield forecasting. Weather parameters namely maximum temperature and minimum temperature, rainfall, relative humidity in the morning and evening, sunshine hours, evaporation along with sugarcane yield have been used as inputs variables. The performance metrics like R2, Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) have been used to select the best model for predicting the yield of the crop. Among the models, Random Forest algorithm is selected as the best fit based on the high R2 and minimum error values. The results indicate that among the weather variables, rainfall and relative humidity in the evening have significant influence on sugarcane yield.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer