Abstract

The ability to accurately recognize and count persons is crucial in many real-world applications, including surveillance, security, and crowd management, making it one of computer vision’s most fundamental tasks. You Only Look Once (YOLO) is one of the most effective deep learning models for object identification and counting in recent years. This research seeks to learn more about the YOLOv8 algorithm for precisely counting people in still photos and moving videos. The YOLO method has been at the forefront of computer vision due to its ability to recognize things in real time. People in a crowd typically overlap and block one other, and perspective effects can result in enormous changes in human size, shape, and appearance in the image, all of which make accurate headcounts challenging.The YOLO methodology and its adaptation for population census are the subject of this research. Results from experiments support the usefulness of the proposed approach. Surveillance, crowd control, traffic monitoring, retail analytics, event management, and urban planning are just some of the potential uses highlighted by the findings of this study. Mean Average Precision (MAP) numbers demonstrate that the identification procedure was successful, and the counting process was accurate to within 100%.

Details

Title
Enhancing real human detection and people counting using YOLOv8
Author
Tahreer Abdul Ridha Shyaa; Hashim, Ahmed A
Publication year
2024
Publication date
2024
Publisher
EDP Sciences
ISSN
22731709
e-ISSN
21174458
Source type
Conference Paper
Language of publication
English
ProQuest document ID
3187556639
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.