It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Human vital-sign sensing using electromagnetic wave has emerged as a promising technology for the noninvasive monitoring of individuals’ health status. Here, a modular reprogrammable metasurface system is presented to suppress noise in noninvasive human respiration sensing. The proposed reprogrammable Biological Metasurface (BioMeta) provides three-dimensional dynamic control over wavefront shaping and thus can reduce interference from human limb motions. This capability allows the system to acquire health data accurately and reliably and is particularly beneficial in real-world environments where human subjects may change posture or location frequently. Furthermore, the meta-atom in BioMeta is modular and detachable, thereby resulting in reusable properties and promoting environmental sustainability. Meanwhile, the characteristics of mechanical control enable BioMeta to operate without continuous power supply, thus saving energy to a certain extent. A contactless human respiration sensing prototype based on the proposed BioMeta is demonstrated. Experimental results validate that the BioMeta system can accurately monitor the breathing of multiple individuals with limb movements by means of time multiplexing, with an average estimation error of 0.5 respiration per minute. The proposed system enhances sensing accuracy and reliability for noninvasive human respiration monitoring, presenting a versatile and environmentally friendly solution for applications like elderly care and disease monitoring.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China