Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ordinary differential equations used to model a dynamic system can evolve during the simulation in circumstances where unpredictable events occur, more specifically, in regard to the domain of power electronics, for example, static converters will exhibit natural switching. Optimal sizing, on top of developing such a model, is a significant challenge for designers, particularly due to the complexity of incorporating efficiently both time-domain and frequency-domain constraints and objectives. This paper presents a methodology and tool to address this issue, leveraging a ‘white-box’ modeling approach, with automatic gradient computation. An efficient optimizer is coupled with a differential equation solver, capable of leveraging automatic differentiation and symbolic derivation, leading to both faster and more accurate outcomes than alternative methods. Furthermore, the developed solver incorporates original functionalities that are crucial for optimization, such as the ability to automatically detect the steady state and extract time-domain and frequency-domain features from the simulations to be optimized or constrained. The methodology is demonstrated through its application in regard to the optimal design of an aircraft electrical power channel.

Details

Title
Optimization with Time and Frequency Constraints Using Automatic Differentiation: Application to an Aircraft Electrical Power Channel
Author
Lucas Agobert  VIAFID ORCID Logo  ; Gerbaud, Laurent  VIAFID ORCID Logo  ; Delinchant, Benoit  VIAFID ORCID Logo 
First page
3624
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3188782753
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.