Abstract

当 n<2c 且具有相同 k-错非线性复杂度时, 本文证明了长度为 n 非线性复杂度为 c 的二元序列与长度为 n+t 非线性复杂度为 c+t 的二元序列有相同的数目 (t 为任意非负整数); 对于长度为 n 非线性复杂度为 c 的二元序列, 确定了 k-错非线性复杂度分别为 1 和 2 的序列数目.

Alternate abstract:

When n<2c and the k-error nonlinear complexity is fixed, this paper proves that the number of sequences with length n and nonlinear complexity c is the same as that of the sequences with length n+t and nonlinear complexity c+t (t is any nonnegative integer). For binary sequences with length n and nonlinear complexity c, the numbers of such sequences with k-error nonlinear complexity 1 and 2 can be precisely determined.

Details

Title
给定 k-错非线性复杂度的有限长二元序列的分布
Author
Zhi-Min, SUN; Xiang-Yong, ZENG; Xue-Ying, XU; Zhi-Xiong, CHEN; 孙志敏; 曾祥勇; 许雪莹; 陈智雄
Pages
466-484
Section
研究论文
Publication year
2024
Publication date
2024
Publisher
Chinese Association for Cryptologic Research, Journal of Cryptologic Research
ISSN
2097-4116
Source type
Scholarly Journal
Language of publication
Chinese
ProQuest document ID
3188798531
Copyright
© 2024. This work is published under http://www.jcr.cacrnet.org.cn/EN/column/column4.shtml Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.