Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effects of microstructure, density, and porosity of a FeCoNiCrAl high-entropy alloy (HEA) coating, fabricated using an internal diameter high-velocity air fuel (ID-HVAF) torch (model: i7 ID), on the isothermal oxidation behavior were investigated. This study pioneers the use of the ID-HVAF i7 ID system for HEA bond coat manufacturing, achieving a highly dense microstructure because of its low-operating spray temperature technique. To elucidate these effects, the microstructure and chemistry of the coating, the growth of the thermally grown oxides (TGOs), the phase transformation of alumina, and the oxidation rate were investigated at different temperatures. After 50 h at 1000 °C, 1100 °C, and 1150 °C, a dense, uniform, and thin alumina TGO layer (1.8 μm) was observed. The results demonstrate that the oxidation resistance of the HEA coating is enhanced because of the dense microstructure achieved via HVAF-i7, characterized by low porosity and uniform phase distribution, which contribute to improved barrier properties against oxygen diffusion. The growth of the TGO layer is controlled, resulting in a dense and continuous TGO layer. However, with increasing temperature and time, the alumina TGO layer becomes spalled, which is attributed to the absence of reactive elements. Overall, this study reveals that the FeCoNiCrAl HEA exhibits significant potential for enhancing oxidation resistance at high temperatures.

Details

Title
Effect of Microstructure on Oxidation Resistance and TGO Formation in FeCoNiCrAl HEA Coatings Deposited by Low-Temperature HVAF Spraying
Author
Shahbazi, Hossein 1 ; Lima, Rogerio S 2   VIAFID ORCID Logo  ; Stoyanov, Pantcho 3 ; Moreau, Christian 1   VIAFID ORCID Logo 

 Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada 
 National Research Council of Canada, 75 de Mortagne Blvd, Boucherville, QC J4B 6Y4, Canada; [email protected] 
 Department of Chemical and Materials Engineering, Concordia University, Montreal, QC H3G 1M8, Canada; [email protected] 
First page
1569
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3188830291
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.