Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The U.S. National Scenic Trail system, encompassing over 12,000 km of hiking trails along the Appalachian Trail (AT), Continental Divide Trail (CDT), and Pacific Crest Trail (PCT), provides critical vegetation corridors that protect diverse forest, savannah, and grassland ecosystems. These ecosystems represent essential habitats facing increasing environmental pressures. This study offers a landscape-scale analysis of the vegetation dynamics across a 2 km wide conservation corridor (20,556 km2), utilizing multidecadal Landsat and MODIS satellite data via Google Earth Engine API to assess the vegetation health, forest disturbance recovery, and phenological shifts. The results reveal that forest loss, primarily driven by wildfire, impacted 1248 km2 of land (9.5% in the AT, 39% in the CDT, and 51% in the PCT) from 2001 to 2023. Moderate and severe wildfires in the PCT (713 km2 burn area) and CDT (350 km2 burn area) corridors exacerbated the vegetation stress and facilitated the transition from forest to grassland. LandTrendr analysis at 15 sample sites revealed slow, multi-year vegetation recovery in the CDT and PCT corridors based on the temporal segmentation and vegetation spectral indices (NBR, NDVI, NDWI, Tasseled Cap). The post-disturbance NBR values remained significantly reduced, averaging 0.31 at five years post-event compared to 0.6 prior to the disturbance. Variations in the vegetation phenology were documented, with no significant trends in the seasonal advancement or delay. This study establishes a robust baseline for vegetation change across the trail system, highlighting the need for further research to explore localized trends. Given the accelerating impacts of climate change and wildfire frequency, the findings underscore the necessity of adaptive conservation strategies to guide vegetation management and ensure the long-term stability and sustainability of vegetation cover in these vital conservation areas.

Details

Title
Spatiotemporal Vegetation Dynamics, Forest Loss, and Recovery: Multidecadal Analysis of the U.S. Triple Crown National Scenic Trail Network
Author
Ignatius, Amber R 1   VIAFID ORCID Logo  ; Annis, Ashley N 1 ; Helton, Casey A 1 ; Reeb, Alec W 1 ; Ricke, Dylan F 2 

 Institute for Environmental & Spatial Analysis, University of North Georgia, 4018 Mundy Mill Rd., Oakwood, GA 30566, USA; [email protected] (A.N.A.); [email protected] (C.A.H.); [email protected] (A.W.R.) 
 Jacobs Engineering, 1041 East Butler Rd., Greenville, SC 29607, USA; [email protected] 
First page
1142
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3188879937
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.