Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sarcopenia, affecting between 1–29% of the older population, is characterized by an age-related loss of skeletal muscle mass and function. Reduced muscle strength, either in terms of quantity or quality, and poor physical performance are among the criteria used to diagnose it. The current gold standard methods to evaluate sarcopenia are limited in terms of their cost, required expertise, and portability. A possible alternative for sarcopenia detection and monitoring is surface electromyography, which offers comprehensive information on muscle function, but a systematic synthesis of the existing literature is lacking. This systematic review aims to evaluate the application of sEMG in diagnosing and monitoring sarcopenia, focusing on the muscles involved, signal processing techniques, artificial intelligence models, and statistical analysis methods used for data interpretation. Following PRISMA guidelines, a search was performed in PubMed, Scopus, and IEEE databases from 2014 up to December 2024. Original studies using sEMG for sarcopenia diagnosis or assessment in older populations were included. After removing duplicates, 145 articles were identified, of which 18 were included in the final analysis. The findings indicate a growing interest in the adoption of sEMG in sarcopenia assessment. However, methodological heterogeneity among studies limits comparability. sEMG represents a promising option for the early detection of sarcopenia, but standardized guidelines for data collection and interpretation are needed. Future studies should focus on clinical validation and results reproducibility.

Details

Title
A Systematic Review of Surface Electromyography in Sarcopenia: Muscles Involved, Signal Processing Techniques, Significant Features, and Artificial Intelligence Approaches
Author
Leone, Alessandro  VIAFID ORCID Logo  ; Carluccio, Anna Maria  VIAFID ORCID Logo  ; Caroppo, Andrea  VIAFID ORCID Logo  ; Manni, Andrea  VIAFID ORCID Logo  ; Rescio, Gabriele  VIAFID ORCID Logo 
First page
2122
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3188898493
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.