Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a novel approach for fabricating porous NiO films decorated with nanowires, achieved through sputtering followed by thermal oxidation of a metallic layer. Notably, we successfully fabricate NiO nanowires using this simple and cost-effective method, demonstrating its potential applicability in the gas-sensing field. Furthermore, by using the film of our nanowires, we are able to easily prepare NiO sensors and deposit the required Pt electrodes directly on the film. This is a key advantage, as it simplifies the fabrication process and makes it easier to integrate the sensors into practical gas-sensing devices without the need for nanostructure transfer or intricate setups. Scanning electron microscopy (SEM) reveals the porous structure and nanowire formation, while X-ray diffraction (XRD) confirms the presence of the NiO phase. As a preliminary investigation, the gas-sensing properties of NiO films with varying thicknesses were evaluated at different operating temperatures. The results indicate that thinner layers exhibit superior performances. Gas measurements confirm the p-type nature of the NiO samples, with sensors showing high responsiveness and selectivity toward NO2 at an optimal temperature of 200 °C. However, incomplete recovery is observed due to the high binding energy of NO2 molecules. At higher temperatures, sufficient activation energy enables a full sensor recovery but with reduced response. The paper discusses the adsorption–desorption reaction mechanisms on the NiO surface, examines how moisture impacts the enhanced responsiveness of Pt-NiO (2700%) and Au-NiO (400%) sensors, and highlights the successful fabrication of NiO nanowires through a simple and cost-effective method, presenting a promising alternative to more complex approaches.

Details

Title
Preparation of NiO NWs by Thermal Oxidation for Highly Selective Gas-Sensing Applications
Author
Marwa Ben Arbia 1   VIAFID ORCID Logo  ; Sung-Ho, Kim 2 ; Jun-Bo, Yoon 2 ; Comini, Elisabetta 1   VIAFID ORCID Logo 

 Sensor Laboratory, Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Via Valotti 9, 25123 Brescia, Italy; [email protected] 
 School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; [email protected] (S.-H.K.); [email protected] (J.-B.Y.) 
First page
2075
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3188903770
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.