It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT–PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
2 The three institute – University of Technology Sydney, Sydney, Australia
3 School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
4 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
5 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
6 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
7 Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
8 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
9 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
10 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile