It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Streptococcus suis is one of the important emerging zoonotic pathogens. Serotype 2 is most prevalent in patients worldwide. In the present study, we first isolated one S. suis serotype 7 strain GX69 from the blood culture of a patient with septicemia complicated with pneumonia in China. In order to deepen the understanding of S. suis serotype 7 population characteristics, we investigated the phylogenetic structure, genomic features, and virulence of S. suis serotype 7 population, including 35 strains and 79 genomes. Significant diversities were revealed in S. suis serotype 7 population, which were clustered into 22 sequence types (STs), five minimum core genome (MCG) groups, and six lineages. Lineages 1, 3a, and 6 were mainly constituted by genomes from Asia. Genomes of Lineages 2, 3b, and 5a were mainly from Northern America. Most of genomes from Europe (41/48) were clustered into Lineage 5b. In addition to strain GX69, 13 of 21 S. suis serotype 7 representative strains were classified as virulent strains using the C57BL/6 mouse model. Virulence-associated genes preferentially present in highly pathogenic S. suis serotype 2 strains were not suitable as virulence indicators for S. suis serotype 7 strains. Integrative mobilizable elements were widespread and may play a critical role in disseminating antibiotic resistance genes of S. suis serotype 7 strains. Our study confirmed S. suis serotype 7 is a non-negligible pathotype and deepened the understanding of the population structure of S. suis serotype 7, which provided valuable information for the improved surveillance of this serotype.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
2 Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, People's Republic of China
3 Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Canada
4 Departamento de Sanidad Animal, Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
5 The College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
6 Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
7 Yulin Center for Disease Prevention and Control, Yulin, People's Republic of China
8 OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China