Full text

Turn on search term navigation

© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Ulcerative colitis (UC) is a chronic intestinal inflammation that is prone to relapse and is difficult to fully recover; therefore, there is a need for safer alternative treatments. Caffeic acid (CA) is a natural polyphenolic compound that has antioxidant and anti-inflammatory properties. However, the beneficial effects and mechanisms of action of CA in UC remain unclear.

Purpose: This study evaluated the protective effect of CA against dextran sulfate sodium (DSS)-induced intestinal injury in Drosophila melanogaster model.

Results: Oral administration of CA significantly reduced body damage in UC flies, improved their survival rate, restored damaged digestion, and improved locomotion. CA supplementation significantly alleviated intestinal damage in UC flies by restoring excretion balance, repairing intestinal atrophy, improving acid-base balance imbalance, inhibiting intestinal structural destruction, inhibiting intestinal epithelial cell death and intestinal stem cell (ISC) excessive proliferation, and reducing the number of harmful bacteria. Mechanistic studies found that CA significantly reduced the expression of Toll and Imd pathway genes (including Myd88, Dif, PGRP-LC, Imd, Rel, and Dpt), reduced ROS levels and the expression of apoptosis-related genes (Debcl, Cyt-c-p, DrlCE, Dronc, and Dark), and increased ATP and MFN2 levels.

Conclusion: CA alleviated intestinal damage mainly by inhibiting the Toll and Imd signaling pathways and inhibiting apoptosis mediated by mitochondrial damage. These findings suggest that CA holds promise as a potential therapeutic for UC treatment.

Details

Title
Caffeic Acid Protects Against Ulcerative Colitis via Inhibiting Mitochondrial Apoptosis and Immune Overactivation in Drosophila
Author
Xiu, M; Li B; He L; Shi, Y; Zhang, Y; Zhou, S; Liu, Y  VIAFID ORCID Logo  ; Wang, N; He J  VIAFID ORCID Logo 
Pages
2157-2172
Section
Original Research
Publication year
2025
Publication date
2025
Publisher
Taylor & Francis Ltd.
e-ISSN
1177-8881
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3190887338
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.