It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ABSTRACT
Nutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Salmonella enterica Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse Salmonella genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon. With expanding access to CRISPR-Cas9 for host genome manipulation, it is now pertinent to re-visit past results in the context of specific mouse models, identify gaps and incongruities in current knowledge landscape of Salmonella homeostasis, and recommend a straight path forward towards a more universal understanding of this historic host–microbe relationship.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Zoology, University of Oxford , Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ