It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The paper addresses the limitations of the Moth-Flame Optimization (MFO) algorithm, a meta-heuristic used to solve optimization problems. The MFO algorithm, which employs moths' transverse orientation navigation technique, has been used to generate solutions for such problems. However, the performance of MFO is dependent on the flame production and spiral search components, and the search mechanism could still be improved concerning the diversity of flames and the moths' ability to find solutions. The authors propose a revised version called GMSMFO, which uses a Novel Gaussian mutation mechanism and shrink MFO to enhance population diversity and balance exploration and exploitation capabilities. The study evaluates the performance of GMSMFO using the CEC 2017 benchmark and 20 datasets, including a high-dimensional intrusion detection system dataset. The proposed algorithm is compared to other advanced metaheuristics, and its performance is evaluated using statistical tests such as Friedman and Wilcoxon rank-sum. The study shows that GMSMFO is highly competitive and frequently superior to other algorithms. It can identify the ideal feature subset, improving classification accuracy and reducing the number of features used. The main contribution of this research paper includes the improvement of the exploration/exploitation balance and the expansion of the local search. The ranging controller and Gaussian mutation enhance navigation and diversity. The research paper compares GMSMFO with traditional and advanced metaheuristic algorithms on 29 benchmarks and its application to binary feature selection on 20 benchmarks, including intrusion detection systems. The statistical tests (Wilcoxon rank-sum and Friedman) evaluate the performance of GMSMFO compared to other algorithms. The algorithm source code is available at https://github.com/MohammedQaraad/GMSMFO-algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Mathematics, College of Computer Sciences and Mathematics, Tikrit University , Tikrit 34001 , Iraq
2 TIMS, FS, Abdelmalek Essaadi University , Tetouan 93000 , Morocco
3 Department of Basic Engineering Science, Faculty of Engineering, Menoufia University , Shebin El-Kom 32951 , Egypt
4 Institute of Computing, Kohat University of Science and Technology , Kohat 26000 , Pakistan
5 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia , Brisbane 4001 , Australia
6 College of Computer Science and Engineering, Taibah University , Yanbu 46411 , Saudi Arabia