It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cyclic GMP–AMP synthase (cGAS), as a DNA sensor, plays an important role in cGAS–STING pathway, which further induces expression of type I interferon as the innate immune response. Previous studies reported that liquid–liquid phase separation (LLPS) driven by cGAS and long DNA is essential to promote catalytic activity of cGAS to produce a second messenger, cyclic GMP–AMP (cGAMP). However, the molecular mechanism of LLPS promoting cGAS activity is still unclear. Here, we applied dual-color fluorescence cross-correlation spectroscopy (dcFCCS), a highly sensitive and quantitative method, to characterize phase separation driven by cGAS and DNA from miscible individual molecule to micronscale. Thus, we captured nanoscale condensates formed by cGAS at close-to-physiological concentration and quantified their sizes, molecular compositions and binding affinities within condensates. Our results pinpointed that interactions between DNA and cGAS at DNA binding sites A, B, and C and the dimerization of cGAS are the fundamental molecular basis to fully activate cGAS in vitro. Due to weak binding constants of these sites, endogenous cGAS cannot form stable interactions at these sites, leading to no activity in the absence of LLPS. Phase separation of cGAS and DNA enriches cGAS and DNA by 2 to 3 orders of magnitude to facilitate these interactions among cGAS and DNA and to promote cGAS activity as an on/off switch. Our discoveries not only shed lights on the molecular mechanisms of phase-separation-mediated cGAS activation, but also guided us to engineer a cGAS fusion, which can be activated by 15 bp short DNA without LLPS.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structure, Tsinghua University , Beijing, 100084, China
2 School of Life Sciences, Technology Center for Protein Sciences, Tsinghua University , Beijing, 100084, China