It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
High-density and nanosized deformation twins in face-centered cubic (fcc) materials can effectively improve the combination of strength and ductility. However, the microscopic dislocation mechanisms enabling a high twinnability remain elusive. Twinning usually occurs via continuous nucleation and gliding of twinning partial dislocations on consecutive close-packed atomic planes. Here we unveil a completely different twinning mechanism being active in metastable fcc materials. The transformation-mediated twinning (TMT) is featured by a preceding displacive transformation from the fcc phase to the hexagonal close-packed (hcp) one, followed by a second-step transformation from the hcp phase to the fcc twin. The nucleation of the intermediate hcp phase is driven by the thermodynamic instability and the negative stacking fault energy of the metastable fcc phase. The intermediate hcp structure is characterized by the easy slips of Shockley partial dislocations on the basal planes, which leads to both fcc and fcc twin platelets during deformation, creating more twin boundaries and further enhancing the prosperity of twins. The disclosed fundamental understanding of the complex dislocation mechanism of deformation twinning in metastable alloys paves the road to design novel materials with outstanding mechanical properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Applied Materials Physics, Department of Materials Science and Engineering , Royal Institute of Technology , Brinellvägen 23, Stockholm, SE-10044 , Sweden
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) , School of Materials Science and Engineering, Northeastern University , Shenyang 10819 , China
3 School of Aerospace, Mechanical & Mechatronic Engineering , The University of Sydney , Camperdown Sydney, NSW 2006 , Australia
4 State Key Laboratory for Mechanical Behavior of Materials , Frontier Institute of Science and Technology, Xi’an Jiaotong University , Xi’an 710049 , China