It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research. In this combined Arctic cruise field and modeling study, we investigated Aitken-mode particle growth to sizes above 80 nm. A mechanism is suggested that explains how Aitken-mode particles can become CCN without requiring high water vapor supersaturation. Model simulations suggest the formation of semivolatile compounds, such as methanesulfonic acid (MSA) in fog droplets. When the fog droplets evaporate, these compounds repartition from CCNs into the gas phase and into the condensed phase of nonactivated Aitken-mode particles. For MSA, a mass increase factor of 18 is modeled. The postfog redistribution mechanism of semivolatile acidic and basic compounds could explain the observed growth of >20 nm h−1 for 60-nm particles to sizes above 100 nm. Overall, this study implies that the increasing frequency of NPF and fog-related particle processing can affect Arctic cloud properties in the summertime boundary layer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details













1 Atmospheric Microphysics, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany
2 Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany
3 Department of Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany
4 Institute of Meteorology, Universität Leipzig , Leipzig 04103 , Germany
5 Department of Methods and Algorithms for AI, Know-Center , Graz 8010 , Austria
6 Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki , Helsinki 00014 , Finland