Abstract
Introduction
DUOC-01 is a macrophage-like cell therapy product manufactured by culturing banked human umbilical cord blood cells under GMP conditions. Currently, the safety of DUOC-01 is being tested as a bridging therapy in children with demyelinating leukodystrophies undergoing unrelated donor umbilical cord blood transplantation after myeloablative conditioning. DUOC-01 protects against loss of function in several preclinical models with demyelinating conditions of the central nervous system, making it an attractive therapy for patients with multiple sclerosis (MS) who experience destruction of myelin sheaths as pathology of their disease. The mechanism by which DUOC-01 promotes remyelination and if it directly influences oligodendrocyte lineage cells is untested.
Objective
Using multiple systems (primary oligodendrocyte precursor cell [OPC] cultures, in vitro cerebellar slice cultures, and experimental autoimmune encephalomyelitis [EAE], a mouse model of MS), we examined how DUOC-01 influences numerous steps of pathology and recovery.
Methods
Using a brain slice culture, we added DUOC-01 to the lysophosphatidylcholine (LPC)-treated slices. We quantified myelinated axons by assessing percent co-localization of myelin basic protein and neurofilament in the control, LPC, and LPC+DUOC-01 groups. To test the DUOC-01 effect in the EAE model, we immunized C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide (MOG35-55) in complete Freund’s adjuvant. To match clinical protocols, we incubated DUOC-01 in Ringer’s lactate with hydrocortisone (HC) for 2 hours at room temperature. At the onset of EAE disease symptoms, we injected DUOC-01 into the cerebrospinal fluid by a single intra-cisterna magna injection, then recorded clinical scores daily for 2 weeks. To test if DUOC-01 could directly affect OPCs, we set up a primary OPC culture isolated from neonatal mice and added DUOC-01 treatment to the culture.
Results
In the cerebellar slice model, we demonstrated a higher number of myelinated neuron fibers in the DUOC-treated group compared with the LPC-treated group. In the EAE model, compared with mice injected with Ringer’s or HC+Ringer’s, mice injected with DUOC-01 derived clinical benefit with lower clinical scores. In the primary OPC culture, the DUOC-01 treatment drove the maturation of OPC to become myelin producing oligodendrocytes.
Discussion
Our data suggest that DUOC-01 could be beneficial in treating MS and other diverse neurological demyelinating conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Duke University , Durham, NC , USA