It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We show the coherence properties of a signal can be measured by a Hartmann wavefront sensor in a nonclassical regime. Recasting the detection theory of the classical Hartmann sensor in the sense of quantum tomography enables to measure the coherence function, which is an analogy to the density matrix of mixed quantum states. Two methods were tested for the reconstruction of the coherence matrix from the intensity scan in the nonclassical mode of the Hartmann sensor. The reconstruction was performed in a classic way using the POVM matrix and using data pattern tomography.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer