It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A new hyperon-proton scattering experiment, dubbed J-PARC E40, was performed to measure differential cross sections of the Σ+p, Σ−p elastic scatterings and the Σ−p → Λn scattering by identifying a lot of Σ particles in the momentum ranging from 0.4 to 0.8 GeV/c produced by the π±p → K+Σ± reactions. We successfully measured the differential cross sections of these three channels with a drastically improved accuracy with a fine angular step. These new data will become important experimental constraints to improve the theories of the two-body baryon-baryon interactions. Following this success, we proposed a new experiment to measure the differential cross sections and spin observables by using a highly polarized Λ beam for providing quantitative information on the ΛN interaction. The results of three Σp channels and future prospects of the Λp scattering experiment are described.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer