It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diffuse gamma-ray emission from the decay of radioactive 26Al is a messenger from the nucleosynthesis activity in our current-day galaxy. Because this material is attributed to ejections from massive stars and their supernovae, the gamma-ray signal includes information about nucleosynthesis in massive star interiors as it varies with evolutionary stages, and about their feedback on the surrounding interstellar medium. Our method of population synthesis of massive-star groups has been refined as a diagnostic tool for this purpose. It allows to build a bottom-up prediction of the diffuse gamma-ray sky when known massive star group distributions and theoretical models of stellar evolution and core-collapse supernova explosions are employed. We find general consistency of an origin in such massive-star groups, in particular we also find support for the clumpy distribution of such source regions across the Galaxy, and characteristics of large cavities around these. A discrepancy in the integrated 26Al gamma-ray flux is interpreted as an indication for excess 26Al emission from nearby, distributed in cavities that extend over major regions of the sky.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer