It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the Monte Carlo thermal-physical calculations for nuclear reactors, the precise and effective transfer of data between different meshes is a difficult issue of thermal and physical coupling. Converting two separate meshes and transferring the data is an exceptionally difficult and complex task within the conventional nuclear thermal-physics coupling approach. The newly developed Functional Expansion Tallies (FET) method can obtain the continuous distribution of parameters in the solution space.
By applying FET method to nuclear thermal-physics coupling, the no-mesh continuous fission energy distribution can be obtained, which is suitable for more complex meshes. Additionally, the computational memory can be minimized by substituting the data from numerous mesh power distribution data points with the coefficients of the function.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer