It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We describe our use of deep learning to optimize the multi-dimensional parameter space of systems-on-chip as an important step towards the scalable production of photonic solutions and their widespread integration into high-volume applications. The challenges of transitioning between prototype and volume production are highlighted, and the suitability of deep neural networks for navigating the multi-dimensional design space of today’s photonic circuits is discussed. We adopt multi-path neural network architectures to reduce the computational requirements of model training and to mitigate the risk of overfitting. We demonstrate the use of a multi-path neural network to optimize the construction parameters of photonic designs in a high-volume production environment. Lastly, we discuss the advantages of using machine learning not only as a highly capable tool for navigating the multi-dimensional design space of complex systems-on-chip but also as an effective strategy for compensating for fabrication process non-uniformities that are undetectable by standard process metrology instruments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer