It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Exceptional points (EPs) in non-Hermitian systems have attracted significant interest due to their unique behaviors, including novel wave propagation and radiation. While EPs have been explored in various photonic systems, their integration into standard photonic platforms can expand their applicability to broader technological domains. In this work, we propose and experimentally demonstrate EPs in an integrated photonic strip waveguide configuration, exhibiting unique deep wave penetration and uniform-intensity radiation profiles. By introducing the second-order grating on one side of the waveguide, forward and backward propagating modes are coupled both directly through second-order coupling and indirectly through first-order coupling via a radiative intermediate mode. To describe the EP behavior in a strip configuration, we introduce modified coupled-mode equations that account for both transverse and longitudinal components. These coupled-mode formulas reveal the formation of EPs in bandgap closure, achieved by numerically optimizing the grating’s duty cycle to manipulate the first- and second-order couplings simultaneously. Experimental observations, consistent with simulations, confirm the EP behavior, with symmetric transmission spectra and constant radiation profiles at the EP wavelength, in contrast to conventional exponential decay observed at detuned wavelengths. These results demonstrate the realization of EPs in a widely applicable strip waveguide configuration, paving the way for advanced EP applications in nonlinear and ultrafast photonics, as well as advanced sensing technologies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2 Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
3 Graduate School of Quantum Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
4 School of Electrical Engineering and Graduate School of Quantum Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea