It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Circular dichroism (CD) spectroscopy is essential for biochemistry, structural biology and pharmaceutical chemistry. While the chiroptical properties of chiral molecules are characterized by the Pasteur parameter κ, it is commonly conceived that the generation of CD is solely attributed to the imaginary part κ′′. However, since the imaginary part κ′′ is orders of magnitude smaller than the real part κ′ for most chiral molecules, the achievable sensitivity of CD spectroscopy is quite limited. Here, we report a recipe for realizing ultrasensitive CD spectroscopy based on the κ′ component of chiral molecules. Two quasi-bound states in the continuum are coupled by chiral molecules to form two hybridized branches, whose wavelengths and eigenpolarizations are very sensitive to the value of κ′. Giant CD signals over four orders of magnitude larger than the case without mode coupling are thus produced, paving the way towards chiral structure analysis at the single molecule level.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, 12652University of Science and Technology of China, 230027 Hefei, China