Full text

Turn on search term navigation

© 2025 Willocquet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Very few dynamic simulation models truly involve explicit, quantitative, two-way couplings of epidemiological and agrophysiological processes. Our aim is to develop a generic, transparent and simple, coupled disease-crop model, DYNAMO-A, where a polycyclic epidemic develops within the canopy of an annual crop. DYNAMO-A builds upon existing models, RICEPEST and WHEATPEST, respectively designed as crop loss simulation platforms for rice and wheat, and the generic model GENEPEST, which was designed for further crop-specific development and educational purposes. Two intertwined components constitute DYNAMO-A: (1) an agrophysiological component simulates crop growth, which alters the carrying capacity of epidemics; and (2) an epidemiological component simulates epidemics, which affect crop growth through damage mechanisms. Analyses using DYNAMO-A consider different simulation scenarios according to the pathogen lifestyle (trophism) and production situations. First, scenarios consider a biotrophic ideotype which is a light stealer and assimilate diverter, and a necrotrophic ideotype which is a light stealer and an accelerator of leaf senescence. Second, scenarios consider two production situations (favourable or less favourable), i.e., two contexts leading to differing attainable (un-injured) crop yields (good or average). Epidemics caused by a biotrophic pathogen reduce the green leaf area and diverts plant assimilates to the pathogen tissues, resulting in a decrease in yield. In epidemics caused by a necrotrophic pathogen, both diseased and green leaf areas are reduced because of disease-induced senescence, resulting also in yield loss. Overall, at a given level of disease epidemic, absolute yield losses are higher with a biotrophic pathogen in a more favourable production situation, whereas yield losses to a necrotrophic pathogen tend to be similar irrespective of production situations. Our results concur with previous studies, both field-experiment and model-based, on several crop-disease systems. Future modelling with DYNAMO-based models should enable interdisciplinary research addressing plant disease impacts on current and future agricultural production.

Details

Title
DYNAMO-A: A generic simulation model coupling crop growth and disease epidemic
Author
Willocquet, Laetitia  VIAFID ORCID Logo  ; Bregaglio, Simone; Ferrise, Roberto; Kim, KH; Savary, Serge
First page
e0321261
Section
Research Article
Publication year
2025
Publication date
Apr 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194483836
Copyright
© 2025 Willocquet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.