Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Renewable energy technologies have become an increasingly important component of the global energy supply. In recent years, photovoltaic and wind energy have been the fastest-growing renewable sources. Although oceans present harsh environments, their estimated energy generation potential is among the highest. Ocean-based solutions are gaining significant momentum, driven by the advancement of offshore wind, floating solar, tidal, and wave energy, among others. The integration of various marine energy sources with green hydrogen production can facilitate the exploitation and transportation of renewable energy. This paper presents a mathematics-driven analysis for the simulation of a technical model designed as a generic framework applicable to any location worldwide and developed to analyze the integration of solar energy generation and green hydrogen production. It evaluates the impact of key factors such as solar irradiance, atmospheric conditions, water surface flatness, as well as the parameters of photovoltaic panels, electrolyzers, and adiabatic compressors, on both energy generation and hydrogen production capacity. The proposed mathematics-based framework serves as an innovative tool for conducting multivariable parametric analyses, selecting optimal design configurations based on specific solar energy and/or hydrogen production requirements, and performing a range of additional assessments including, but not limited to, risk evaluations, cause–effect analyses, and/or degradation studies. Enhancing the efficiency of solar energy generation and hydrogen production processes can reduce the required photovoltaic surface area, thereby simplifying structural and anchoring requirements and lowering associated costs. Simpler, more reliable, and cost-effective designs will foster the expansion of floating solar energy and green hydrogen production in marine environments.

Details

Title
Mathematics-Driven Analysis of Offshore Green Hydrogen Stations
Author
García-Ruiz, Álvaro 1 ; Fernández-Arias, Pablo 2 ; Vergara, Diego 2   VIAFID ORCID Logo 

 School of Nautical Science and Marine Engineering, Square Marina Mercante, s/n, 15011 A Coruña, Spain; [email protected] 
 Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros, s/n, 05005 Ávila, Spain 
First page
237
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194484915
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.