Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Insulin-like growth factors (IGFs) play crucial roles in the regulation of animal growth and reproduction. However, the functional and regulatory mechanisms underlying ovarian growth and oocyte maturation in teleosts remain unclear. In this study, the expression profiles of lncRNAs and mRNAs were analyzed in the ovaries of golden pompano (Trachinotus ovatus) treated with IGF1 and IGF2 proteins to gain insights into the role of these two IGF ligands in the regulation of ovarian development and maturation. A total of 1494 lncRNAs and 8728 mRNAs were differentially expressed following IGF1 treatment compared with the control group. A total of 101 lncRNAs and 377 mRNAs were differentially expressed after IGF2 treatment compared to those in the control group. The results revealed that KEGG pathways enriched by target genes of the DE lncRNAs overlapped significantly with those enriched by the DE mRNAs in both the IGF1 and IGF2 groups. The key overlapping enriched pathways included ECM receptor interaction, gap junction, Hedgehog signaling pathway, Ras signaling pathway, Rap1 signaling pathway, TGF beta signaling pathway, Wnt signaling pathway, GnRH signaling pathway, progesterone-mediated oocyte maturation, oocyte meiosis, cell cycle, and MAPK signaling pathway. The differentially expressed genes (DEGs) involved in ovarian development and oocyte maturation were cyp17a1, cyp19a1, star, hsd17b3, hsd17b7, adam23, slc26a6, htr2b, h2ax, nanos3, krt18, pgr, and inhbb, following IGF1 and IGF2 treatment. Furthermore, four lncRNAs (MSTRG.66521.1, MSTRG.49969.1, MSTRG.59923.1, and MSTRG.13767.1) for IGF1 and two (MSTRG.20896.2 and MSTRG.58123.2) for IGF2 within the lncRNA–mRNA network were found to target DEGs related to ovarian development and maturation. This suggests that IGFs may affect reproductive processes by regulating the expression of lncRNAs and mRNAs. RT-qPCR analysis revealed that these six lncRNAs showed high expression levels in the brain, pituitary, liver, and gonad tissues, indicating their potential involvement in regulating ovarian growth and development. This study elucidates the lncRNA–mRNA regulatory mechanism in response to IGF1 and IGF2 treatment during stage III of ovarian development in golden pompano, thereby deepening our understanding of its functional role.

Details

Title
Integrated lncRNA and mRNA Transcriptome Analyses of IGF1 and IGF2 Stimulated Ovaries Reveal Genes and Pathways Potentially Associated with Ovarian Development and Oocyte Maturation in Golden Pompano (Trachinotus ovatus)
Author
Brighton, Ndandala Charles 1   VIAFID ORCID Logo  ; Guo Yuwen 2   VIAFID ORCID Logo  ; Ju Zhimin 2 ; Fachri Muhammad 2 ; Moses, Mwemi Happiness 2 ; Chen Huapu 1 

 Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; [email protected] (C.B.N.); [email protected] (Y.G.); [email protected] (Z.J.); [email protected] (M.F.); [email protected] (H.M.M.), Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China 
 Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; [email protected] (C.B.N.); [email protected] (Y.G.); [email protected] (Z.J.); [email protected] (M.F.); [email protected] (H.M.M.) 
First page
1134
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194486144
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.