Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex types, aiming to elucidate their implications for tin–polymetallic mineralization. The results indicate that gabbro, monzonite, diorite, and syenite are derived from enriched mantle-derived magmas and have undergone limited crustal contamination. Granites are formed by the mixing of mantle- and crust-derived magmas, involving both physical mixing and chemical diffusion. Major and trace element characteristics suggest that the Gejiu granites predominantly exhibit features of both A-type and I-type granites. Harker diagrams and whole-rock indicators, such as Nb/Ta and Zr/Hf, suggest that granites experienced a two-stage fractional crystallization process, ultimately forming highly evolved biotite monzogranite. Fractional crystallization is the dominant mechanism controlling magmatic evolution, while high-temperature melting and biotite decomposition reactions are critical for the formation of the world-class Gejiu tin deposit.

Details

Title
Genesis and Magmatic Evolution of the Gejiu Complex in Southeastern Yunnan, China
Author
Wang Chuntian 1 ; Wang, Jiasheng 1 ; Zheng Xiaojun 2 ; Wang, Rong 1 ; Ye Bin 1 

 Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China; [email protected] (C.W.); 
 Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China; [email protected] (C.W.);, Yunnan Nonferrous Geological Bureau, Kunming 650051, China 
First page
4242
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194490494
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.