Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The conventional approach to investigating enzyme systems involves the simultaneous investigation of a large number of molecules and observing ensemble-averaged properties. However, modern science allows us to study the properties of single molecules and to obtain data on biochemical systems at a fundamentally new level, significantly expanding our understanding of the mechanisms of biochemical processes. Imaging of single biomolecules with high spatial and temporal resolution is among such modern research tools. To effectively image the individual steps or intermediates of biochemical reactions in single-molecule experiments, we need to develop a methodology for data acquisition and analysis. Its development will make it possible to solve the problem of separating the static and dynamic disorder present in the parameters identified by traditional proteomic methods. Such a methodology may be based on AFM imaging, the high-resolution microscopic visualization of enzymes. This review focuses on this direction of research, including the relevant methodological and practical solutions related to the potential of developing a single-molecule approach to the study of enzyme systems using AFM-based techniques. We focus on the results of enzyme reaction studies, as there are still few such studies, as opposed to the AFM studies of the mechanical properties of individual enzyme molecules.

Details

Title
AFM for Studying the Functional Activity of Enzymes
Author
Ivanova, Irina A  VIAFID ORCID Logo  ; Valueva, Anastasia A; Ershova, Maria O; Pleshakova, Tatiana O  VIAFID ORCID Logo 
First page
574
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194494510
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.