Full text

Turn on search term navigation

© 2025 by the author. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lung and bronchus cancer, collectively called lung cancer, remains one of the most lethal malignancies worldwide, with its incidence and mortality rates continuing to pose significant public health challenges. Numerous studies have explored various risk factors for lung cancer, including smoking, environmental pollutants, genetic predispositions, and occupational hazards. However, emerging research suggests that elevation above sea level may also influence lung and bronchus cancer prevalence and outcomes. We analyzed elevation data for 2662 contiguous U.S. counties to determine if there is a significant relationship between lung cancer and elevation. Moreover, we employed hierarchical multiple regression and a complex sample general linear model (CSGLM) to enhance the understanding of the factors influencing lung and bronchus cancer, with a particular focus on elevation. Using Local Moran’s I cluster analysis, we identified statistically significant hot spots and cold spots for the mortality rate related to lung cancer. In the hierarchical regression model, a significant correlation between lung cancer and elevation remained evident. This suggests that the risk of mortality from lung and bronchus cancer increases with decreasing elevation (R2 = 0.601). Furthermore, within the CSGLM framework, an R2 value of 0.763 highlighted a strong link between lung cancer mortality and elevation. This relationship remained significant even after accounting for complex sample designs and applying weight adjustments. This geographic correlation has not been documented in previous studies. Further research is necessary to elucidate the precise mechanisms through which elevation influences lung cancer biology.

Details

Title
Geographic Distribution of Lung and Bronchus Cancer Mortality and Elevation in the United States: Exploratory Spatial Data Analysis and Spatial Statistics
Author
Ha Hoehun
First page
141
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194612948
Copyright
© 2025 by the author. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.