Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The objective of the presented work is the stern duct design for the JBC (Japan Bulk Carrier) hull form. Since the original duct only provides a 0.6% resistance reduction, an innovative duct will be proposed to improve the ship resistance and propulsion performance. The duct section geometry is based on the NACA (National Advisory Committee for Aeronautics) 4-digit foil series. First, we analyze whether the wake flow field and total resistance of the ship are improved, and then we investigate the self-propulsion performance for the selected ones. The research tool is the CFD (Computational Fluid Dynamics) software OpenFOAM 9 with the viscous free surface flow field modelled by the VOF (Volume of Fluid) method and the SST (Shear Stress Transport) kω turbulence model. The propeller effect is implemented by the MRF (Multi-Reference Frame). Compared to the original duct, two ducts, namely, NACA 7908 and NACA 6.3914, show the best (2.8%) resistance reduction in the bare hull condition. By installing both ducts, the propeller thrust decreases 6 and 5% to reach the self-propulsion point, and the behind-hull efficiency increases 7 and 6%. Both ducts save the energy, i.e., effective horsepower, by 4.3%, and produce obvious flow acceleration, achieving around 10% higher effective wake factor (1 − w). The nominal and propeller wakes are improved as well.

Details

Title
Stern Duct with NACA Foil Section Designed by Resistance and Self-Propulsion Simulation for Japan Bulk Carrier
Author
Ping-Chen, Wu; Yeh Tzu-Chi; Yu-Cheng, Wang
First page
32
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
24115134
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194616169
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.