Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pulpotomy is performed when tooth decay reaches the dental pulp or when the crown is fractured due to trauma. Mineral trioxide aggregate (MTA) is commonly used in pulpotomy, but its prognosis can be variable. N-acetyl-L-cysteine (NAC), an antioxidant amino acid, has garnered attention due to its potential benefits. This study aimed to investigate the effects of MTA and NAC on pulpotomy outcomes. We used Sprague Dawley rat maxillary molars to perform pulpotomy and employed Superbond C&B, MTA, and MTA mixed with NAC (MTA–NAC) for pulp capping. We obtained tissue sections 3 and 7 days postpulpotomy, conducting histological analysis by examining the morphology of pulp tissue and assessing dentin sialophosphoprotein (DSPP) and osteopontin expression levels. At 3 days postpulpotomy, MTA and MTA–NAC reduced the inflammatory response. At 7 days postpulpotomy, dentin bridge formation was observed following MTA–NAC application, and although MTA resulted in DSPP- and osteopontin-positive areas, these areas were more extensive following MTA–NAC application. Given that adding NAC to MTA enhanced dentin bridge formation, MTA–NAC appears to be a superior option for pulp capping.

Details

Title
Promoting Dentin Bridge Formation Through N-Acetyl-L-Cysteine Application in Rat Molar Pulpotomy: An Experimental Study
Author
Takagi Kota 1 ; Nakamura, Koichi 1 ; Yoshimura Yoshitaka 2 ; Yawaka Yasutaka 1 

 Department of Dentistry for Children and Disabled Persons, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan; [email protected] (K.T.); [email protected] (Y.Y.) 
 Department of Molecular Cell Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan; [email protected] 
First page
117
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20794983
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194616577
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.