Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Abnormal gait recognition, which aims to detect and identify deviations from normal walking patterns indicative of various health conditions or impairments, holds promising applications in healthcare and many other related fields. Currently, Wi-Fi-based abnormal gait recognition methods in the literature mainly distinguish the normal and abnormal gaits, which belongs to coarse-grained classification. In this work, we explore fine-grained gait rectification methods for distinguishing multiple classes of abnormal gaits. Specifically, we propose a deep learning-based framework for multi-class abnormal gait recognition, comprising three key modules: data collection, data preprocessing, and gait classification. For the gait classification module, we design a hybrid deep learning architecture that integrates convolutional neural networks (CNNs), bidirectional gated recurrent units (BiGRUs), and an attention mechanism to enhance performance. Compared to traditional CNNs, which rely solely on spatial features, or recurrent neural networks like long short-term memory (LSTM) and gated recurrent units (GRUs), which primarily capture temporal dependencies, the proposed CNN-BiGRU network integrates both spatial and temporal features concurrently. This dual-feature extraction capability positions the proposed CNN-BiGRU architecture as a promising approach for enhancing classification accuracy in scenarios involving multiple gaits with subtle differences in their characteristics. Moreover, the attention mechanism is employed to selectively focus on critical spatiotemporal features for fine-grained abnormal gait detection, enhancing the model’s sensitivity to subtle anomalies. We construct an abnormal gait dataset comprising seven distinct gait classes to train and evaluate the proposed network. Experimental results demonstrate that the proposed method achieves an average recognition accuracy of 95%, surpassing classical baseline models by at least 2%.

Details

Title
Wi-FiAG: Fine-Grained Abnormal Gait Recognition via CNN-BiGRU with Attention Mechanism from Wi-Fi CSI
Author
Dong Anming 1   VIAFID ORCID Logo  ; Zhang Jiahao 2 ; Xu Wendong 1 ; Jia, Jia 3 ; Yun Shanshan 3 ; Yu, Jiguo 4 

 Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; [email protected] (A.D.); [email protected] (W.X.), Shandong Provincial Key Laboratory of Industrial Network and Information System Security, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
 School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; [email protected] 
 Shandong Zhengyun Information Technology Co., Ltd., Jinan 250000, China; [email protected] 
 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
First page
1227
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194622462
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.