Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Boron-modified ceramic materials derived from polymers (PDC) are the subject of this research. The primary objective is to compare the structure and microstructure of SiBOC materials obtained in varying pyrolysis conditions in comparison to base SiOC materials. The preparation involved a number of stages, staring with the hydrolytic polycondensation method, followed by the initial thermal treatment and the final stage—pyrolysis process in argon or argon/hydrogen atmospheres at different temperatures. Bulk SiOC and SiBOC glasses were thoroughly analyzed. Microstructure studies included Scanning Electron Microscopy and Mercury Intrusion Porosimetry. Moreover, to confirm the structure, the research consisted of Fourier-Transform Infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. The conducted research confirmed boron incorporation into the material structure in all samples. A free carbon phase has also been observed in SiBOC glasses, which has been confirmed in Raman spectroscopy measurements. This research indicates that in particular conditions, it is possible to obtain amorphous materials with nanocrystalline inclusions. This paper proves that the introduction of boron increases the porosity of materials and enhances their thermal stability.

Details

Title
Effect of Temperature and Ceramization Atmosphere on the Structure and Microstructure of Boron-Modified SiBOC Materials
Author
Łyszczarz Klaudia; Jeleń Piotr  VIAFID ORCID Logo  ; Szymczak Patryk; Sitarz Maciej  VIAFID ORCID Logo 
First page
1794
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194624530
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.