Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Huazhuang block, located on the northern slope of the Gaoyou Depression in the Subei Basin of the Jiangsu Oilfield, exhibits complex stratigraphic geomechanical characteristics. During drilling, wellbore instability-related issues, such as obstruction, sticking, pump pressure buildup, bit pressure buildup, and overflow due to abnormally high pressure, prolong the drilling cycle and significantly hinder the safe and efficient development of shale oil. In order to determine the appropriate drilling fluid density and ensure safe and efficient drilling in this block, a comprehensive wellbore profile, incorporating rock mechanical parameters, in-situ stress, and predictions of pore pressure, collapse pressure, lost circulation pressure, and fracture pressure, was established based on laboratory tests and well logging data. This study reveals the mechanisms of wellbore collapse and fluid loss in the Huazhuang block. The results indicate that the second and fourth members of the Funing Formation in the Huazhuang block have a relatively weak and unconsolidated structure with a high content of water-sensitive minerals, leading to significant hydration risks when using water-based drilling fluids. As depth increases, compressive strength, elastic modulus, and cohesion show an increasing trend, while the internal friction angle and Poisson’s ratio gradually decrease. Additionally, in-situ stress increases significantly, meeting the condition of σV > σH > σh. Above 3300 m, the equivalent density of formation pore pressure is below 1.20 g/cm3, Whereas below 3300 m, there is significant overpressure, with a maximum equivalent pore pressure density reaching 1.45 g/cm3. The deeper the formation, the narrower the safe density window, making wellbore collapse more likely. To prevent wellbore instability, both the sealing capability and density of the drilling fluid should be considered. Enhancing the sealing performance of the drilling fluid and selecting an appropriate drilling fluid density can help improve wellbore stability. The established rock mechanical parameters and four-pressure prediction profile for the Huazhuang block provide a scientific basis for optimizing wellbore structure design and selecting key engineering parameters.

Details

Title
Stability Analysis of Borehole Walls in Shale Formations of the Huazhuang Block
Author
Li, Daqi 1 ; Gao Shuyang 1 ; Tang Zhichuan 1 ; Zhang, Yayun 1 ; Wu Huimei 2 ; Cheng, Wei 2   VIAFID ORCID Logo 

 Sinopec Petroleum Engineering Technology Research Institute Co., Ltd., Beijing 102206, China; [email protected] (D.L.); [email protected] (S.G.); [email protected] (Z.T.); [email protected] (Y.Z.), State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China 
 School of Petroleum Engineering, Yangtze University, Wuhan 430100, China; [email protected] 
First page
1151
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194638959
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.