Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study utilized unmanned aerial systems (UAS) and terrestrial laser scanners (TLS) to develop a 3D numerical model of slope anchors and conduct a comprehensive analysis. Initial data were collected using a UAS with 4 K resolution, followed by a second dataset captured 6 months later with 8 K resolution after artificially damaging the anchor. The model analyzed damage factors such as cracks, destruction, movement, and settlement. Cracks smaller than 0.3 mm were detected with an error margin of ±0.05 mm. The maximum damaged area on the anchor head was within 3% of the designed value, and the volume of damaged regions was quantified. A combination analysis examined elevation differences on the anchor’s irregular bottom surface, resulting in an average difference at 20 points, reflecting ground adhesion. The rotation angle (<1°) and displacement of the anchor head were also measured. The study successfully extracted quantitative damage data, demonstrating the potential for an accurate assessment of anchor performance. The findings highlight the value of integrating UAS and TLS technologies for slope maintenance. By organizing these quantitative metrics into a database, this approach offers a robust alternative to traditional visual inspections, especially for inaccessible facilities, providing a foundation for enhanced safety evaluations.

Details

Title
Case Study on the Use of an Unmanned Aerial System and Terrestrial Laser Scanner Combination Analysis Based on Slope Anchor Damage Factors
Author
Lee, Chulhee 1   VIAFID ORCID Logo  ; Kang Joonoh 2   VIAFID ORCID Logo 

 Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea; [email protected] 
 Department of Urban Engineering, Incheon National University, Incheon 22012, Republic of Korea 
First page
1400
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194640396
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.