Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ground-penetrating radar (GPR) has emerged as a promising technology for estimating the soil water content (SWC) in the vadose zone. However, most current studies focus on partial GPR data, such as travel-time or amplitude, to achieve SWC estimation. Full waveform inversion (FWI) can produce more accurate results than inversion based solely on travel-time. However, it is subject to local minima when using a local optimization algorithm. In this paper, we propose a novel and powerful GPR waveform inversion scheme based on Harris hawks optimization (HHO) algorithm. The proposed strategy is tested on synthetic data, as well as on field experimental data. To further validate our approach, the results of the HHO algorithm are also compared with those of partial swarm optimization (PSO) and grey wolf optimizer (GWO). The inversion results from both synthetic and real experimental data demonstrate that the proposed inversion scheme can efficiently invert both SWC and layer thicknesses, thus achieving very fast convergence. These findings further confirm that the HHO algorithm can be effectively applied for the quantitative interpretation of GPR data.

Details

Title
Harris Hawks Optimization for Soil Water Content Estimation in Ground-Penetrating Radar Waveform Inversion
Author
Qiao Hanqing 1   VIAFID ORCID Logo  ; Zhang, Minghe 2 ; Bano Maksim 2 

 Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; [email protected] 
 ITES (UMR7063), EOST, University of Strasbourg, F-67000 Strasbourg, France; [email protected] 
First page
1436
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194641873
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.