Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Under the concept of green and low-carbon development, efficient and environmentally friendly biochar preparation methods have attracted much attention. This study assessed a novel sodium carbonate activator combined with acid modification for sludge-based biochar (SB) production and its adsorption of organics in wool scouring wastewater. Under 600 °C, the optimal carbonization temperature, the residual weight percentage of biochar carbonized material increases from 27% to 73% after Na2CO3 activation compared to ZnCl2 activation. Compared to HCl-modified ZnCl2-activated biochar (Zn-Cl-SB), HCl-H2SO4-modified Na2CO3-activated biochar (Na-Cl/S-SB) had a specific surface area of 509.3 m2/g, and the average mesopore size was 7.896 nm, with micropore volume and specific surface area increasing by 83.3% and 79.8%, respectively. Meanwhile, the C-O oxygen-containing functional groups and pyrrole nitrogen-containing functional groups were significantly increased. Na-Cl/S-SB exhibited an excellent adsorption performance for organic matter in wool scouring wastewater, with a maximum adsorption capacity of 168.3 mg/g. Furthermore, the adsorption process followed the pseudo-second-order kinetic model. Three-dimensional fluorescence spectrum analysis showed that Na-Cl/S-SB had a strong adsorption capacity for aromatic protein analogs, proteins containing benzene rings, and dissolved microbial by-products in wool scouring wastewater. This study will serve as a guideline for the green synthesis of SB while improving its ability to adsorb pollutants.

Details

Title
Novel Sodium Carbonate Activation for Manufacturing Sludge-Based Biochar and Assessment of Its Organic Adsorption Property in Treating Wool Scouring Wastewater
Author
Zhang, Wanru; Huang Hongrong; Cao Zhen; Kang, Shuyu; Shi Xueqing; Ma, Weiwei; Ratnaweera Harsha
First page
256
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194647138
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.