It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a new solution for controlling complex nonlinear systems, through the combination of a type 2 fuzzy CMAC controller and Jordan neural network. This method takes advantage of type 2 fuzzy CMAC in dealing with uncertainties and learning ability, while the Jordan neural network helps to enhance the stability and improve the performance of the system. The adaptive learning laws were designed to help the proposed network automatically update the network parameters. The results from simulations and experiments have shown that this method achieves superior accuracy and robustness compared to other methods. When applied to control the Magnetic Levitation System, this method shows great potential in solving complex nonlinear control problems, opening up new approaches in this field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer